The Public Administration Help Tank

FHV Data Bank for India

Improving Transportation, Culture, Environment and Quality of Life

Taxis, Autos, Jitneys

Micro transit or For Hire Vehicles (FHV)
Transit that is hailed on the street
FHV is individual transit- Point to Point
Mass transit is between fixed points
Micro transit feeds Mass Transit
Worldwide usually regulated

 Can fares can be set scientifically to influence driver behaviour? and all stake holders?

drivers, passengers, fellow road users, government (infrastructure), owners, capital, manufacturers, and society

Revenue Model of FHV

Depends on topography of city
Depends on traffic
Depends on service
Depends on demand

The Science of Fares

Demand for Service
Quality of Service
Affordability

Need for continuous statistics!

Required: Statistics Bank

Demand (Quantity demanded)
Quality of Service demanded
Affordability
Traffic and utilisation
Entry Economics

Current Requirement

- Regulation of Fares requires statistics on demand, capacity and QoS
- Granularity of information critical to influence stake holder behaviour
- Required from all major cities, some B class cities and some towns

Survey of Chennai Autos

Traffic profile
Fleet profile
Driver skillset profile
Driver demography

Descriptive stats and advanced stats

Research Methodology

Focus groups of stake holders
Pilot survey (40 drivers)
Personal interview by Sample survey
Confidence level of at least 90%

Research Factors

Open ended finite population
Varies by geography, catchment
No source list
Legal and illegal autos

Research Design

Frame is part of population yet to be identifiedMulti stage sampling protocol-Stratification + systematic selection
Sample survey

Sample size required 240, actual 260
Final usable 257 responses

Homogeneity Test on Data

Chi square test for 99% probability and five degrees freedom
Split half test of reliability
Quarter tests (validity?)

 ANOVA uniformity of fares and driver characteristics

 Regression on fares demanded for underlying patterns

Scope and Limitation

Scope limited to Chennai

Limitations

- Hesitation among drivers to respond
- Lack of secondary data
- Usual limitations of all statistical studies

Ownership of autos

Living standard of drivers %

Family Profile of drivers %

March 2011

Ability to estimate distance

Fare Demanded

ANOVA - Shopping Center

Source	DF	SumSq	Mean Sq	F	Р
Strata	7	528.66	75.52	9.48	.000
Error	234	1863.44	7.96		
Total	241	2392.10			

Regression- Shopping Centre

Factor	Coefficient	Error	Sig	R-Sq (Adj)
Constant	7.864	3.571	.0000	
Distance	1.285	0.328	.0000	68.77%
Duration	1.085	0.114	.0000	

Fare= 7.864 + 1.285 distance + 1.085 duration

ANOVA - Fares to Koyambedu

Table 3.29: Fare	o Bus Station	in Different Strata	(*Significant)
------------------	---------------	---------------------	----------------

Source	DF	SumSq	Mean Sq	F	Р
Strata	7	128	18.3	1.49	.170
Error	223	2728	12.2		
Total	230	2856			

Regression- Koyambedu Fare

Factor	Coefficient	Error	Sig	R-Sq (Adj)
Constant	11.859	3.571	.0010	
Distance	3.755	0.328	.0000	57.67%
Duration	.444	0.114	.0001	

Fare= 11.859 + 3.755 distance + .444 duration

ANOVA - Fares to Central

Table 3.28: Fare to Rail Head in Different Strata (*Significant)					
Source	DF	SumSq	Mean Sq	F	Р
Strata	7	373.82	53.40	6.21	.000
Error	221	1899	8.59		
Total	228	2272.82			

Regression- Fare to Central

Factor	Coefficient	Error	Sig	R-Sq (Adj)
Constant	8.139	1.699	.0000	
Distance	2.906	0.368	.0000	75.92%
Duration	.70	0.098	.0000	

Fare=8.139 + 2.906 distance + .7 duration

Working limits of service

Number of trips per day: 20
Probable live Km per day: 100
Dead Km per day: 50
Working hours per day: 12 - 13

Discussion

FHV Data Bank for India

Gemini to Kodambakkam

2 Km pays Rs 15

40 minutes in evening

One hour if there is a procession

How much per day?

Gemini to 2 Km fares

Rs 20 to Spencer

Rs 50 to Kodambakkam

Rs 30 to Sterling Road

The Problem

- Fares not linked to Service or Cost
- Permits not related to demand
- Licensing not to knowledge
- No access to institutional capital
- Outdated engineering
- Exploitative culture at all levels
- Economic and social importance not realised by policy makers
 March 2011

Not about "auto drivers"

It is the micro transit of the city

Autos and Chennai

Only to-door service—
Small turning radius
Economic and social importance of autos not evident to society

AutoFact: Second Largest

Second largest people mover in city
Autos move 15 lakhs, Buses 30 lakhs
Only door-to-door service
Ambulance of the poor
Autos reduce traffic congestion
Turns in 5 m, taxis require 12 m

AutoFact: Contribution to City Life

Good transit improves city life

Music season, tourism, night cinema can flourish with a good auto system

Critical for better quality of living

AutoFact: Contribution to Economy

Investment of Rs 500 Crores

Daily revenue of Rs 2 Crores

Livelihood of 80,000 driver families

Ancillary tradesmen of 10,000 families March 2011

Why regulation

- Stopping on the road penalises others
- Consumer not equipped to judge QoS– driver, skill, vehicle, distance, time
- Probability of custom is very low
- Spare capacity increases QoS and cost
- FHVs must cruising around to increase utilisation, thereby reduce fare
- Good service saves total cost to society

Types of Regulation

- Fare
- Fleet size
- Capital- Permits and organisation
- Labour- Driver qualification
- Area of operation
- Vehicle-- type, size, performance, age

Experience of cities worldwide

- London: Free entry of capital and labour, considered best in the world
- New York: High capital control so permits sell for some Rs 30 lakhs
- Washington, DC: No meter, fare zones
- Hong Kong: 3 systems in one city
- Singapore: 4 companies, good service

Comparison of Fares-(Rupees)

		LON	TYO	NYC	PAR	SIN	HKG	MAA
1	5 Km/	1000	800	650	425	200	300	20
	30 min							
2	Per Km	160	120	100	40	14	45	3.50
3	Per min	27	50	10	25	7	10	Nil

Price and Behaviour

- Price is the factor common to all the stake holders in any product-- it influences behaviour of all stakeholders
- The Fare is the Price for FHV service
- Price modifies behaviour in all walks of life

Pricing example-- One flight

No two passengers pay same fare Full fare, APEX, Discounted and standby Peak, lean, weekend, festival, OW, RT, RTW, Sector, upgrades Travel agent, courtesy, reciprocals, OSD Mileage, promotions, packages, bundling Combinations of all these First, Business, Semi-business and Coach

Quality of Service

- Waiting time for auto
- Quality of vehicle
- Knowledge and culture of driver
- Comfort of drive
- Price or Fare

Example of Bus Service

- Quality of vehicle
- Frequency / waiting time
- Service coverage
- Number of stops/ travel time
- Staff quality

Factors of price and traffic

- Total demand in Passenger-Km
- Trips per day
- Trip distance, duration, occupancy
- Empty cruising time and distance

How many permits? Or drivers?

Combinations

		Now	Alt 1	2	3	4	5
1	Per Km	7	9	5	4	5	
2	Per min	0	0	1	1	1	
3	Trip	3	0		5	(10)	
	100 Km		900?	500	400		
	7 hours		0	400	400		
	20 trips		0		100		
	Total		900	900	900		

The Business Perspective

A defined product or service based on a need
Chargeable Factors
A Revenue Model
Pricing policy

Chargeable Factors

Revenue Model of FHV

Depends on topography

Depends on traffic

Depends on service

Differences to topography

Number of trips

Duration/ Distance

Revenue Models

>> Trip Duration

High Duration	High Duration
Small Distances	High Distance
Ex: Towns- Madurai	Ex: Large Cities
Time Model	Combination Model
Small Duration	High Speed
Small Distances	Large Distances
Ex: Kodai	Ex: Travel
Trip Model	Distance Model

>> Trip distance

Revenue Streams

 Businesses offer many products at a time so that price can be varied to suit the interest of consumers

 Alternatively increase revenue streams/ factors to increase granularity in pricing

Four Ds of the Fare

Distance
Duration
Drop
Minimum Fare- Flag Drop
Minimum increase- Meter Drop
Discern- surcharges and discounts

Cost and charging methods

Discerns

- Demand Discerns- Peak hour, CBD
- Convenience Discerns- Booking, Negotiated trip, Shared service, Bus Stop drop, Shed run
- Marginal Income Discerns-Luggage, Additional passenger,
- Compensatory Discerns- Waiting, Petrol increase, Electronic Meter, Congregation, Night, Soiling, Holiday

Findings of Chennai

- Fares individually negotiated
- Uncontrolled auto population
- Incorrect Revenue Model and Mix
- Quality of driver pool
- Regulation failure- statistics, perspective
- Quality of life of drivers

No access to organised finance March 2011

Recommendations for Chennai

- Timely Fare Revisions
- Demand based permits
- Combination Model for Fare basis
- Fare Mix to be disseminated
- Education and training of drivers
- Facilitation and infrastructure

Transition

- Permit and Driver regulation
- Introduction of Time Fare
- Petrol Price Surcharge
- Other Surcharges
- Enforcement of Trip Sheet

Discussion

FHV Data Bank for India

Findings

Absence of Behavioural Perspective
Pricing Method- Cost vs contribution
Revenue Model
Fare Mix is absent or not evident

Recommendations

- Behavioural Approach to Fares
- Contribution approach to Pricing
- Revenue Models as base
- 4 Ds for Fare Mix
 - Distance
 - Duration
 - Drops
 - Discerns

Recommendations continued

- Engineering of Autos
- Regulation and Facilitation
- Fare meters with data statistics
- Access to ESI for drivers and family
- Taxi and Auto Commission

Planned transition and enforcement!

The Public Administration Help Tank

Improving Transportation, Culture, Environment and Quality of Life